Nature of Radiation and DNA damage

Urszula Katarzyna Szewczak

Index

- 1. What is radiation?
- 2. Ionizing Radiation
- 3. Interaction of Gamma-radiation with Matter
- 4. Radiobiology
- 5. Direct and Indirect action of radiation
- 6. Steps of biological damage
- 7. DNA damage
- 8. DNA reparation and Mutations
- 9. Consequences of mutations
- 10.Bibliography

What is Radiation?

- Radiation is energy travelling through space. Light, heat and sound are types of radiation.
- Radiation can have a form of waves or streams of particles.

Electromagnetic:

X rays Y visible infrared etc.

Particle:

α β

neutrones

Ionizing:

X rays

γα

В

Non-lonizing:

visible infrared Radio waves microwaves etc.

Ionizing Radiation

 lonizing radiation is radiation with enough energy to remove electrons from the orbit of an atom, causing the atom to become charged or ionized.

Ionizing Radiation

- Charged particles interact strongly and ionize directly
- Neutral particles interact less, ionize indirectly and penetrate farther

Ionizing Radiation

- Alpha particle: has two protons and two neutrons (helium nucleus).
 Has positive charge.
- 0e Beta particle: emission of electron from nucleus (neutron splits into the proton and electron)
- oe Positron: has same mass as electron but positive charge.

 Emitted from proton that splits into neutron and positive electron
- Gamma Rays: electromagnetic radiation. Emmition of photones from nuclues that is in excited state. Has the effect of moving the nucleus from a higher to a lower energy state
- Neutrons: high energy particles without charge

Interaction of Gamma-radiation with Matter

y-rays lose their energy when they pass through the matter, by:

- Interaction with the orbital electrones
- Interaction with the nucleus of the absorber atom

γ-rays may lose all their energy or only a part of it.

Photoelectric Effect:

γ-rays transfers **all** its energy to an **orbital electron** of the absorber atom whereby the electron (**photoelectron**) is ejected. The resultant vacancy in this shel can be filled by an electron from another shell and **X-ray is generated** from the transition.

Compton Effect:

γ-rays transfers **part of** its energy to an **electron in outer shell** of the absorber atom and the electron is ejected. The photon with reduced energy **is deflected** in another direction.

Radiobiology

Some basic priciples:

- The interaction of radiation with the cells is a probability function
- Very quick absorption of the energy.
- Non selective interaction radiation can't "choose" witch cells will affect
- Radiation always cause injury as a consequence of energy absrobtion. However the effect depends on each tissue sensibility
- The produced lesions are not specifc they can be produced also by other causes.

LET - linear energy transfer

Used in radiobiology and radiation protection for defining the **quality of an ionizing radiation beam**. LET focuses attention on the linear rate of energy absorption by the absorbing medium as the charged particle traverses the medium.

The unit reserved for the LET is **keV/μm** ..

Direct and Indirect action

When the ionizing radiation is absorbed in biological material, the damage to the cell may occur in one of two mechanisms:

- **Direct**: transfer of energy (ionization) to **macromolecules such as DNA**, **RNA**. Damage is produceddirectly. This is the dominant mechanism in the interaction of high LET particles such as neutrons or alpha particles with biological material.
- Indirect: intracellular medium (mainly water) absorbs energy.

 Radiolysis is caused and ions H+ and free radicals (H•, OH•) are released. These reactive species bring about the indirect radiation damage to biological system by reacting and damaging the molecules in cells.

$$O'H + O'H \longrightarrow H_2O_2$$

Steps of biological damage

1. PHYSICS: absorption of energy:

- 1. Ionization of atoms (high energy electron is ejected)
- 2. Excitation: electrones from lower energy orbitals goes to higher energy ones

2. CHEMISTRY:

- The high particle is moving through tissue produces free radicals in water.
- The free radicals may produce damage in DNA (breakage of chemical bonds)

3. BIOLOGY:

- 1. Biochemistry: lesion and reparation of genome.
- 2. cell/tissue: quick and late effects

TIME (s)

10⁻³ - hours/days/generations

DNA damage

Types of DNA damage:

- Single strand breaks (SSB): break sugar/phosfate or sugar/base. Break in one or both strands. Cell can easily repair this damage.
- Double strand break (DSB): breaks in both strands in proximal places. Formed as the consequence of the attempted repair of UV radiation-induced base damage in DNA.
- Nitrogenous base damage: hidroxilation, dissemination, loss of base. Bases are not iqualy sensitive to radiation: thymine>cytosine>>adenine>guanine
- Damaged sugars
- DNA strand cross-links
- Multiple localized damage: containing all types of damages

The higher the dose of radiation is – more lesions are produced ad more strand breaks occurs

DNA reparation and Mutations

Cell has mechanisms of DNA reparation. If the lesion is not repaired mutation appears.

Results of the DNA break reparation:

- Union correct -> no biological impact
- No union -> deletion
- Union incorrect-> chromosomic aberration or structural anomalies.
 - Non-stable aberrations: lead to cell death
 - Stable abrrations: cell is compatible to survive

MUTATION:

- Affects both somatic and germ cells
- Radiation induced mutation are not specific.
- Radiation increases frequency of mutations
- No treshold dose. Any radiation can lead to mutation. Higher the dose is, higher is the probability of mutation (cumulative effect)

Consequences of mutations

10⁻¹⁸ - 10⁻⁶

TIME

hours/days/generations

Bibliography

"http://samclaret.260mb.com/documentos%20proteccion%20radiologica/efectos%20biologicos.pdf"

"http://sisbib.unmsm.edu.pe/bibvirtualdata/tesis/basic/bernui_vm/Cap4.PDF"

"http://www.teledet.com.uy/tutorial-imagenes-satelitales/radiaciones-electromagneticas.htm"

